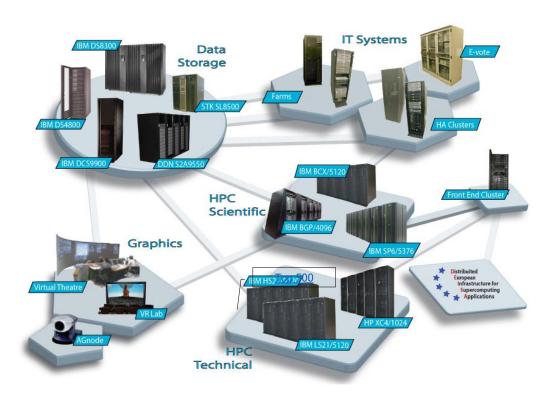


ADVANCED ANALYTICS

Stefano Roselli

s.roselli@cineca.it

CINECA


Il Cineca è un Consorzio Interuniversitario senza scopo di lucro al servizio del sistema accademico nazionale istituito nel 1969.

La missione è "promuovere l'utilizzo dei più avanzati sistemi di **elaborazione dell'informazione** a favore della ricerca scientifica e tecnologica, pubblica e privata", e al trasferimento tecnologico alle imprese e alla Pubblica Amministrazione.

Fanno parte del Consorzio:

- > MIUR
- > 70 università
- > 4 Enti di Ricerca

Circa 900 dipendenti con sedi a Bologna, Milano e Roma

18/10/2016

Il Laboratorio Big Data & Analytics

Il Laboratorio di Big Data & Analytics è una iniziativa di CINECA, nel campo della High Performance Analytics per promuovere la sua diffusione e aiutare i decisori aziendali e i professionisti ICT a comprendere le strategie, le potenzialità e le tecnologie dei Big Data e delle tecniche di Data Mining.

PIATTAFORME SOFTWARE:

- ➤ IBM Big Insights
- > Hortonworks Data Platform

ARCHITETTURE:

- ➤ Data Streaming Analysis

TECNOLOGIE:

- **YARN**
- ➤ Spark SQL, Hive e HBase
- > Storm, Spark Streaming
- ➤ Kafka & MQTT
- ➤ Spark R e Distributed R
- ➤ Librerie: Spark MLLIB, H2O

INFRASTRUTTURA:

HPC IBM NeXtScale server appositamente progettata per i casi di calcolo "data-intensive":

- > 70 nodi IBM NeXtScale con interconnessione a 56 GB/sec
- ➤ Large Scale Machine Learning ➤ Intel Ivy Bridge 20 core per nodo, 1480 core in totale
 - ➤ 128 GB RAM per nodo
- ➤ Hadoop (HDFS, MapReduce), ➤ 40 TB SSD locale al nodo, 16 PB di storage in linea

Advanced Analytics

Gli Advanced Analytics sono applicazioni informatiche che usano metodi matematici e statistici su sistemi computazionali altamente scalabili per estrarre valore dai dati, come trovare schemi ricorrenti (patterns), raggruppamenti (clusters) e relazioni nei dati (rules) per predire futuri comportamenti o scenari, fornendo anche raccomandazioni.

18/10/2016 4

Analisi Predittiva nel CBM

La manutenzione predittiva nella Condition-based maintenance (CBM), si focalizza sull'individuare la probabilità di guasti **prima** che avvengano.

L'applicazione di machine learning per predire situazioni di probabili guasti si basa sul costruire un modello usando dati storici e addestrarlo con casi noti, per essere in grado di identificare o classificare situazioni di potenziali guasti e non. Il modello dovrà essere validato usando dati reali di test prima di applicarlo. La validazione fornisce una indicazione (matrice di confusione) sull'attendibilità del modello individuando i veri positivi, i veri negativi, falsi positivi e i falsi negativi.

5

Machine Learning

Supervised learning

Il sistema apprende da un insieme di esperienza già classificate

Algoritmi Predittivi

Categorical Target Variable:

- Decision Tree
- Random Forest
- Neural Networks
- Support Vector Machines
- K-Neraest Neighbor
- Logistic Regression
- Gradient Boosting Machine

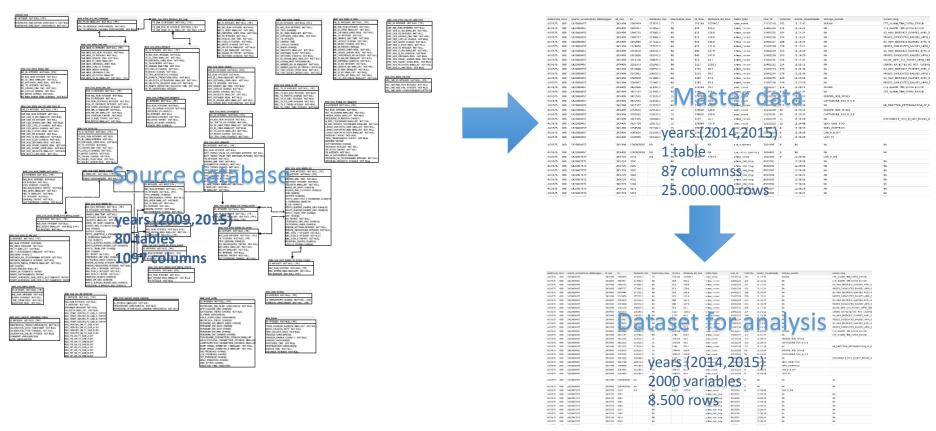
Continuos Target Variable:

- Linear Regression
- Generalized Linear Model

Unsupervised learning

Non si hanno casi da cui il sistema può apprendere

Algoritmi Descrittivi


- Clustering (K-Means)
- Hidden Markov Chains
- Principal Component Analysis (PCA)
- Self-Organizing Maps (SOM)
- Modelli Causali

6

Caso Alstom: Data Preparation

- ✓ Individuate le tabelle e le colonne del database utili all'analisi
- ✓ Creato il Master Data con le variabili necessarie all'analisi
- ✓ Creato il Dataset per gli algoritmi di Machine Learning

7

Caso Alstom: Analisi Predittiva

Obiettivi

1) Valutare in modo automatico se una segnalazione di guasto attivata dal sistema di monitoraggio, sia effettivamente da segnalare all'area di manutenzione

Tecniche di Machine Learning utilizzate

- Decision Tree
- Random Forest
- Neural Networks
- Gradient Boosting Machine

Variabili per ogni evento osservato: tot. 300 var. delle 2.000 disponibili

- logs eventi diagnistica sw AV (Alta Velocità)
- logs eventi diagnistica sw SCMT (Sistema Controllo Marcia Treno)
- eventi rilevanti delle corse AV
- eventi rilevanti delle corse SCMT
- eventi relativi alla odometria

												$\overline{}$
last_run_id	ISSUE	CAB_A_ON	1SERV_TETTO	1EB_ANTENNA_SWITCH	2CAB_A_ON	2SERV_TETTO	2EB_ANTENNA_SWITCH		CAB_A_ON	3SERV_TETTO	3EB_ANTENNA_SWITCH \	ero/falso
1559453	1	30	50	25	6	41	28		29	51	17	0
1561388	2	17	55	16	23	33	28		12	52	25	1
1561966	1	13	67	11	30	50	26		5	41	27	1
1593270	3	15	67	14	29	45	24		7	45	28	1
1656659	2	16	72	30	27	43	21		9	49	32	0
1656661	2	16	72	32	27	43	21		9	49	32	0
1656676	1	21	72	47	27	43	21		9	49	32	0
1699514	1	19	97	12	22	80	13		20	83	15	1
1704569	1	13	66	15	16	103	14		24	56	15	1
1748299	1	23	78	10	26	80	15		14	40	14	0
1783005	1	32	42	16	17	61	24		15	108	14	0
1817617	1	27	67	13	21	42	11		16	52	10	0
1653170	1	20	35	18	37	66	28	\	39	32	17	1
1658885	1	23	61	12	18	30	14		43	69	36	

all'evento

500 Km dall'evento 1000 Km dall'evento

Caso Alstom: risultato ottenuto

Dal risultato ottenuto, emerge la possibilità di ridurre del 25% le false segnalazioni di guasti, che potrebbe tradursi in una riduzione dell'impiego del personale di manutenzione.

Grazie per l'attenzione

Stefano Roselli s.roselli@cineca.it

