

ovvero

>> "Cosa sta succedendo qui per: BigData/Analytics e Digital Twin"<<

(focus sulle PMI di Emilia/Romagna)

🔀 FEDERMANAGER

INECA

ASSPECT Association

crit

BigData/Analytics & Internet-of-Things in Products Life-Cycle

Management

- From Theory to Practice

Big data e data Analytics - Sfide ed opportunità per piccole e grandi aziende

Department of Computer Science and Engineering &

Department of Industrial Engineering Alma Mater Studiorum, University of Bologna

> Eng. Riccardo Accorsi, Ph.D., Assistant Professor Prof. Eng. Marco Patella, Professor

October, 12th, Cineca Building

- Business-Driven Analysis & Architecture
- Big Data System Architecture
- Computer Science & Industrial Engineering: Why together?
- Some Definitions
- From theory to practice:
 - Business Life-Cycle management (Automated Machine Industry)
 - Analytics in Dailure Diagnostic, Trouble Shooting and Condition-based Maintenance (Automated Machine Industry)

Business-Driven Analytics Architecture

Industrial Engineering & Computer Science Why together?

Data Analytics Techniques (i)

Classification

- Identifying to which subpopulation a new item belongs on the basis of a training set of items whose sub-population is known
- App: pattern recognition, biological/biometric classification

Associative Rules

- Discovering interesting relations between variables
- App: pricing/product placement, intrusion detection

Clustering

- Grouping objects so that objects in the same group are more similar to each other than to those in other groups
- **App**: market research, grouping of shopping items/customers

Outlier Detection

- Identification of items which do not conform to an expected pattern
- App: intrusion/misuse detection, fraud discovery

Data Analytics Techniques (ii)

Time Series Analysis

- Analyzing time series data to extract meaningful statistics and other data characteristics
- App: Forecasting, classification

• Text Mining

- Deriving high-quality information from text
- App: Indexing, customer relationship management

Clickstream analysis

- Recording of the parts of the screen a computer user clicks on while web browsing
- **App**: Market research, employee productivity

Sentiment analysis

- Identifying and extracting subjective information in source materials
- App: Enterprise/product reputation

Business Life-Cycle Management

From IOT to IOLM (Internet Of Logistics & Maintenance)

Tools & GUIs for Business Life Cycle Management

Analytics in Dailure Diagnostic, Trouble Shooting and Condition-based Maintenance

- Develop robust models to Predict failures and avoids stops, System Diagnostic, and aid Troubleshooting.
- Analyzing the **historical** machine working status to predict whether the machine status will be Normal or Critic in the next minute.

Step of Analysis

Associative Rules

Building «Basket» of Machine Status before Stops

Scopes:

- Identify those parameters presenting High Info Gain in order to not affect the analysis and increase the accuracy of the predictive model.
- Assess critical values for the identified parameters and aid machine settings accordingly.

Parameter Analysis – Info Gain

PARAMETER	VALUE	START	PERIODS (Day)	%TIME	N° STOP	%STOPS	GOODNESS	
Parameter 1	30	7/1/16 0:00	16.02	51.68%	381	36.92%	14.76%	
Parametro 1	40	7/17/16 3:14	0.97233	3.50%	41	3.97%	-0.84%	
Parametro 1	35	7/18/16 2:40	0.02488	0.09%	0	0.00%	0.09%	Info Gain = 29,88
Parametro 1	38	7/18/16 3:16	6.08941	22.16%	226	21.90%	-2.54%	
Parametro 1	36	7/24/16 5:24	6.99227	22.56%	353	34.21%	-11.65%	
Parametro 2	2850	7/1/16 0:00	30.0045	96.79%	977	94.67%	2.12%	Info Gain = 4,24
Parametro 2	2700	7/31/16 0:06	0.99553	3.21%	55	5.33%	-2.12%	

IMPREMARINE TRADRAS INET ORI - STOP

Parameter 1 is the best for the classification algorithms

• The value 36 of Parameter 1 is critical to the obscere group laum (Failure rsità DI BOLOGNA

DEPARTMENT

INDUSTRIAL ENGINEERING

INDUSTRIAL ENGINEERING

ALMA MATER STUDIORUM Università di Bologna

Riccardo Accorsi, Ph.D

riccardo.accorsi2@unibo.it

Marco Patella, Prof.

marco.patella@unibo.it

Department of Industrial Engineering Department of Computer Science and Engineering